Copied to
clipboard

G = C22×C56⋊C2order 448 = 26·7

Direct product of C22 and C56⋊C2

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22×C56⋊C2, C5610C23, C28.54C24, C23.60D28, Dic144C23, D28.20C23, (C2×C8)⋊35D14, C89(C22×D7), C141(C2×SD16), (C2×C14)⋊9SD16, (C2×C4).99D28, C4.44(C2×D28), (C22×C8)⋊10D7, C71(C22×SD16), (C2×C56)⋊46C22, (C22×C56)⋊14C2, (C2×C28).390D4, C28.289(C2×D4), C4.51(C23×D7), (C22×D28).9C2, C2.23(C22×D28), C14.21(C22×D4), C22.69(C2×D28), (C2×C28).786C23, (C22×C14).144D4, (C22×C4).442D14, (C22×Dic14)⋊11C2, (C2×Dic14)⋊56C22, (C2×D28).228C22, (C22×C28).525C22, (C2×C14).177(C2×D4), (C2×C4).735(C22×D7), SmallGroup(448,1192)

Series: Derived Chief Lower central Upper central

C1C28 — C22×C56⋊C2
C1C7C14C28D28C2×D28C22×D28 — C22×C56⋊C2
C7C14C28 — C22×C56⋊C2
C1C23C22×C4C22×C8

Generators and relations for C22×C56⋊C2
 G = < a,b,c,d | a2=b2=c56=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c27 >

Subgroups: 1764 in 298 conjugacy classes, 127 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C2×C8, SD16, C22×C4, C22×C4, C2×D4, C2×Q8, C24, Dic7, C28, C28, D14, C2×C14, C22×C8, C2×SD16, C22×D4, C22×Q8, C56, Dic14, Dic14, D28, D28, C2×Dic7, C2×C28, C22×D7, C22×C14, C22×SD16, C56⋊C2, C2×C56, C2×Dic14, C2×Dic14, C2×D28, C2×D28, C22×Dic7, C22×C28, C23×D7, C2×C56⋊C2, C22×C56, C22×Dic14, C22×D28, C22×C56⋊C2
Quotients: C1, C2, C22, D4, C23, D7, SD16, C2×D4, C24, D14, C2×SD16, C22×D4, D28, C22×D7, C22×SD16, C56⋊C2, C2×D28, C23×D7, C2×C56⋊C2, C22×D28, C22×C56⋊C2

Smallest permutation representation of C22×C56⋊C2
On 224 points
Generators in S224
(1 99)(2 100)(3 101)(4 102)(5 103)(6 104)(7 105)(8 106)(9 107)(10 108)(11 109)(12 110)(13 111)(14 112)(15 57)(16 58)(17 59)(18 60)(19 61)(20 62)(21 63)(22 64)(23 65)(24 66)(25 67)(26 68)(27 69)(28 70)(29 71)(30 72)(31 73)(32 74)(33 75)(34 76)(35 77)(36 78)(37 79)(38 80)(39 81)(40 82)(41 83)(42 84)(43 85)(44 86)(45 87)(46 88)(47 89)(48 90)(49 91)(50 92)(51 93)(52 94)(53 95)(54 96)(55 97)(56 98)(113 213)(114 214)(115 215)(116 216)(117 217)(118 218)(119 219)(120 220)(121 221)(122 222)(123 223)(124 224)(125 169)(126 170)(127 171)(128 172)(129 173)(130 174)(131 175)(132 176)(133 177)(134 178)(135 179)(136 180)(137 181)(138 182)(139 183)(140 184)(141 185)(142 186)(143 187)(144 188)(145 189)(146 190)(147 191)(148 192)(149 193)(150 194)(151 195)(152 196)(153 197)(154 198)(155 199)(156 200)(157 201)(158 202)(159 203)(160 204)(161 205)(162 206)(163 207)(164 208)(165 209)(166 210)(167 211)(168 212)
(1 126)(2 127)(3 128)(4 129)(5 130)(6 131)(7 132)(8 133)(9 134)(10 135)(11 136)(12 137)(13 138)(14 139)(15 140)(16 141)(17 142)(18 143)(19 144)(20 145)(21 146)(22 147)(23 148)(24 149)(25 150)(26 151)(27 152)(28 153)(29 154)(30 155)(31 156)(32 157)(33 158)(34 159)(35 160)(36 161)(37 162)(38 163)(39 164)(40 165)(41 166)(42 167)(43 168)(44 113)(45 114)(46 115)(47 116)(48 117)(49 118)(50 119)(51 120)(52 121)(53 122)(54 123)(55 124)(56 125)(57 184)(58 185)(59 186)(60 187)(61 188)(62 189)(63 190)(64 191)(65 192)(66 193)(67 194)(68 195)(69 196)(70 197)(71 198)(72 199)(73 200)(74 201)(75 202)(76 203)(77 204)(78 205)(79 206)(80 207)(81 208)(82 209)(83 210)(84 211)(85 212)(86 213)(87 214)(88 215)(89 216)(90 217)(91 218)(92 219)(93 220)(94 221)(95 222)(96 223)(97 224)(98 169)(99 170)(100 171)(101 172)(102 173)(103 174)(104 175)(105 176)(106 177)(107 178)(108 179)(109 180)(110 181)(111 182)(112 183)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 126)(2 153)(3 124)(4 151)(5 122)(6 149)(7 120)(8 147)(9 118)(10 145)(11 116)(12 143)(13 114)(14 141)(15 168)(16 139)(17 166)(18 137)(19 164)(20 135)(21 162)(22 133)(23 160)(24 131)(25 158)(26 129)(27 156)(28 127)(29 154)(30 125)(31 152)(32 123)(33 150)(34 121)(35 148)(36 119)(37 146)(38 117)(39 144)(40 115)(41 142)(42 113)(43 140)(44 167)(45 138)(46 165)(47 136)(48 163)(49 134)(50 161)(51 132)(52 159)(53 130)(54 157)(55 128)(56 155)(57 212)(58 183)(59 210)(60 181)(61 208)(62 179)(63 206)(64 177)(65 204)(66 175)(67 202)(68 173)(69 200)(70 171)(71 198)(72 169)(73 196)(74 223)(75 194)(76 221)(77 192)(78 219)(79 190)(80 217)(81 188)(82 215)(83 186)(84 213)(85 184)(86 211)(87 182)(88 209)(89 180)(90 207)(91 178)(92 205)(93 176)(94 203)(95 174)(96 201)(97 172)(98 199)(99 170)(100 197)(101 224)(102 195)(103 222)(104 193)(105 220)(106 191)(107 218)(108 189)(109 216)(110 187)(111 214)(112 185)

G:=sub<Sym(224)| (1,99)(2,100)(3,101)(4,102)(5,103)(6,104)(7,105)(8,106)(9,107)(10,108)(11,109)(12,110)(13,111)(14,112)(15,57)(16,58)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,65)(24,66)(25,67)(26,68)(27,69)(28,70)(29,71)(30,72)(31,73)(32,74)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,81)(40,82)(41,83)(42,84)(43,85)(44,86)(45,87)(46,88)(47,89)(48,90)(49,91)(50,92)(51,93)(52,94)(53,95)(54,96)(55,97)(56,98)(113,213)(114,214)(115,215)(116,216)(117,217)(118,218)(119,219)(120,220)(121,221)(122,222)(123,223)(124,224)(125,169)(126,170)(127,171)(128,172)(129,173)(130,174)(131,175)(132,176)(133,177)(134,178)(135,179)(136,180)(137,181)(138,182)(139,183)(140,184)(141,185)(142,186)(143,187)(144,188)(145,189)(146,190)(147,191)(148,192)(149,193)(150,194)(151,195)(152,196)(153,197)(154,198)(155,199)(156,200)(157,201)(158,202)(159,203)(160,204)(161,205)(162,206)(163,207)(164,208)(165,209)(166,210)(167,211)(168,212), (1,126)(2,127)(3,128)(4,129)(5,130)(6,131)(7,132)(8,133)(9,134)(10,135)(11,136)(12,137)(13,138)(14,139)(15,140)(16,141)(17,142)(18,143)(19,144)(20,145)(21,146)(22,147)(23,148)(24,149)(25,150)(26,151)(27,152)(28,153)(29,154)(30,155)(31,156)(32,157)(33,158)(34,159)(35,160)(36,161)(37,162)(38,163)(39,164)(40,165)(41,166)(42,167)(43,168)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,120)(52,121)(53,122)(54,123)(55,124)(56,125)(57,184)(58,185)(59,186)(60,187)(61,188)(62,189)(63,190)(64,191)(65,192)(66,193)(67,194)(68,195)(69,196)(70,197)(71,198)(72,199)(73,200)(74,201)(75,202)(76,203)(77,204)(78,205)(79,206)(80,207)(81,208)(82,209)(83,210)(84,211)(85,212)(86,213)(87,214)(88,215)(89,216)(90,217)(91,218)(92,219)(93,220)(94,221)(95,222)(96,223)(97,224)(98,169)(99,170)(100,171)(101,172)(102,173)(103,174)(104,175)(105,176)(106,177)(107,178)(108,179)(109,180)(110,181)(111,182)(112,183), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,126)(2,153)(3,124)(4,151)(5,122)(6,149)(7,120)(8,147)(9,118)(10,145)(11,116)(12,143)(13,114)(14,141)(15,168)(16,139)(17,166)(18,137)(19,164)(20,135)(21,162)(22,133)(23,160)(24,131)(25,158)(26,129)(27,156)(28,127)(29,154)(30,125)(31,152)(32,123)(33,150)(34,121)(35,148)(36,119)(37,146)(38,117)(39,144)(40,115)(41,142)(42,113)(43,140)(44,167)(45,138)(46,165)(47,136)(48,163)(49,134)(50,161)(51,132)(52,159)(53,130)(54,157)(55,128)(56,155)(57,212)(58,183)(59,210)(60,181)(61,208)(62,179)(63,206)(64,177)(65,204)(66,175)(67,202)(68,173)(69,200)(70,171)(71,198)(72,169)(73,196)(74,223)(75,194)(76,221)(77,192)(78,219)(79,190)(80,217)(81,188)(82,215)(83,186)(84,213)(85,184)(86,211)(87,182)(88,209)(89,180)(90,207)(91,178)(92,205)(93,176)(94,203)(95,174)(96,201)(97,172)(98,199)(99,170)(100,197)(101,224)(102,195)(103,222)(104,193)(105,220)(106,191)(107,218)(108,189)(109,216)(110,187)(111,214)(112,185)>;

G:=Group( (1,99)(2,100)(3,101)(4,102)(5,103)(6,104)(7,105)(8,106)(9,107)(10,108)(11,109)(12,110)(13,111)(14,112)(15,57)(16,58)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,65)(24,66)(25,67)(26,68)(27,69)(28,70)(29,71)(30,72)(31,73)(32,74)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,81)(40,82)(41,83)(42,84)(43,85)(44,86)(45,87)(46,88)(47,89)(48,90)(49,91)(50,92)(51,93)(52,94)(53,95)(54,96)(55,97)(56,98)(113,213)(114,214)(115,215)(116,216)(117,217)(118,218)(119,219)(120,220)(121,221)(122,222)(123,223)(124,224)(125,169)(126,170)(127,171)(128,172)(129,173)(130,174)(131,175)(132,176)(133,177)(134,178)(135,179)(136,180)(137,181)(138,182)(139,183)(140,184)(141,185)(142,186)(143,187)(144,188)(145,189)(146,190)(147,191)(148,192)(149,193)(150,194)(151,195)(152,196)(153,197)(154,198)(155,199)(156,200)(157,201)(158,202)(159,203)(160,204)(161,205)(162,206)(163,207)(164,208)(165,209)(166,210)(167,211)(168,212), (1,126)(2,127)(3,128)(4,129)(5,130)(6,131)(7,132)(8,133)(9,134)(10,135)(11,136)(12,137)(13,138)(14,139)(15,140)(16,141)(17,142)(18,143)(19,144)(20,145)(21,146)(22,147)(23,148)(24,149)(25,150)(26,151)(27,152)(28,153)(29,154)(30,155)(31,156)(32,157)(33,158)(34,159)(35,160)(36,161)(37,162)(38,163)(39,164)(40,165)(41,166)(42,167)(43,168)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,120)(52,121)(53,122)(54,123)(55,124)(56,125)(57,184)(58,185)(59,186)(60,187)(61,188)(62,189)(63,190)(64,191)(65,192)(66,193)(67,194)(68,195)(69,196)(70,197)(71,198)(72,199)(73,200)(74,201)(75,202)(76,203)(77,204)(78,205)(79,206)(80,207)(81,208)(82,209)(83,210)(84,211)(85,212)(86,213)(87,214)(88,215)(89,216)(90,217)(91,218)(92,219)(93,220)(94,221)(95,222)(96,223)(97,224)(98,169)(99,170)(100,171)(101,172)(102,173)(103,174)(104,175)(105,176)(106,177)(107,178)(108,179)(109,180)(110,181)(111,182)(112,183), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,126)(2,153)(3,124)(4,151)(5,122)(6,149)(7,120)(8,147)(9,118)(10,145)(11,116)(12,143)(13,114)(14,141)(15,168)(16,139)(17,166)(18,137)(19,164)(20,135)(21,162)(22,133)(23,160)(24,131)(25,158)(26,129)(27,156)(28,127)(29,154)(30,125)(31,152)(32,123)(33,150)(34,121)(35,148)(36,119)(37,146)(38,117)(39,144)(40,115)(41,142)(42,113)(43,140)(44,167)(45,138)(46,165)(47,136)(48,163)(49,134)(50,161)(51,132)(52,159)(53,130)(54,157)(55,128)(56,155)(57,212)(58,183)(59,210)(60,181)(61,208)(62,179)(63,206)(64,177)(65,204)(66,175)(67,202)(68,173)(69,200)(70,171)(71,198)(72,169)(73,196)(74,223)(75,194)(76,221)(77,192)(78,219)(79,190)(80,217)(81,188)(82,215)(83,186)(84,213)(85,184)(86,211)(87,182)(88,209)(89,180)(90,207)(91,178)(92,205)(93,176)(94,203)(95,174)(96,201)(97,172)(98,199)(99,170)(100,197)(101,224)(102,195)(103,222)(104,193)(105,220)(106,191)(107,218)(108,189)(109,216)(110,187)(111,214)(112,185) );

G=PermutationGroup([[(1,99),(2,100),(3,101),(4,102),(5,103),(6,104),(7,105),(8,106),(9,107),(10,108),(11,109),(12,110),(13,111),(14,112),(15,57),(16,58),(17,59),(18,60),(19,61),(20,62),(21,63),(22,64),(23,65),(24,66),(25,67),(26,68),(27,69),(28,70),(29,71),(30,72),(31,73),(32,74),(33,75),(34,76),(35,77),(36,78),(37,79),(38,80),(39,81),(40,82),(41,83),(42,84),(43,85),(44,86),(45,87),(46,88),(47,89),(48,90),(49,91),(50,92),(51,93),(52,94),(53,95),(54,96),(55,97),(56,98),(113,213),(114,214),(115,215),(116,216),(117,217),(118,218),(119,219),(120,220),(121,221),(122,222),(123,223),(124,224),(125,169),(126,170),(127,171),(128,172),(129,173),(130,174),(131,175),(132,176),(133,177),(134,178),(135,179),(136,180),(137,181),(138,182),(139,183),(140,184),(141,185),(142,186),(143,187),(144,188),(145,189),(146,190),(147,191),(148,192),(149,193),(150,194),(151,195),(152,196),(153,197),(154,198),(155,199),(156,200),(157,201),(158,202),(159,203),(160,204),(161,205),(162,206),(163,207),(164,208),(165,209),(166,210),(167,211),(168,212)], [(1,126),(2,127),(3,128),(4,129),(5,130),(6,131),(7,132),(8,133),(9,134),(10,135),(11,136),(12,137),(13,138),(14,139),(15,140),(16,141),(17,142),(18,143),(19,144),(20,145),(21,146),(22,147),(23,148),(24,149),(25,150),(26,151),(27,152),(28,153),(29,154),(30,155),(31,156),(32,157),(33,158),(34,159),(35,160),(36,161),(37,162),(38,163),(39,164),(40,165),(41,166),(42,167),(43,168),(44,113),(45,114),(46,115),(47,116),(48,117),(49,118),(50,119),(51,120),(52,121),(53,122),(54,123),(55,124),(56,125),(57,184),(58,185),(59,186),(60,187),(61,188),(62,189),(63,190),(64,191),(65,192),(66,193),(67,194),(68,195),(69,196),(70,197),(71,198),(72,199),(73,200),(74,201),(75,202),(76,203),(77,204),(78,205),(79,206),(80,207),(81,208),(82,209),(83,210),(84,211),(85,212),(86,213),(87,214),(88,215),(89,216),(90,217),(91,218),(92,219),(93,220),(94,221),(95,222),(96,223),(97,224),(98,169),(99,170),(100,171),(101,172),(102,173),(103,174),(104,175),(105,176),(106,177),(107,178),(108,179),(109,180),(110,181),(111,182),(112,183)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,126),(2,153),(3,124),(4,151),(5,122),(6,149),(7,120),(8,147),(9,118),(10,145),(11,116),(12,143),(13,114),(14,141),(15,168),(16,139),(17,166),(18,137),(19,164),(20,135),(21,162),(22,133),(23,160),(24,131),(25,158),(26,129),(27,156),(28,127),(29,154),(30,125),(31,152),(32,123),(33,150),(34,121),(35,148),(36,119),(37,146),(38,117),(39,144),(40,115),(41,142),(42,113),(43,140),(44,167),(45,138),(46,165),(47,136),(48,163),(49,134),(50,161),(51,132),(52,159),(53,130),(54,157),(55,128),(56,155),(57,212),(58,183),(59,210),(60,181),(61,208),(62,179),(63,206),(64,177),(65,204),(66,175),(67,202),(68,173),(69,200),(70,171),(71,198),(72,169),(73,196),(74,223),(75,194),(76,221),(77,192),(78,219),(79,190),(80,217),(81,188),(82,215),(83,186),(84,213),(85,184),(86,211),(87,182),(88,209),(89,180),(90,207),(91,178),(92,205),(93,176),(94,203),(95,174),(96,201),(97,172),(98,199),(99,170),(100,197),(101,224),(102,195),(103,222),(104,193),(105,220),(106,191),(107,218),(108,189),(109,216),(110,187),(111,214),(112,185)]])

124 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E4F4G4H7A7B7C8A···8H14A···14U28A···28X56A···56AV
order12···22222444444447778···814···1428···2856···56
size11···1282828282222282828282222···22···22···22···2

124 irreducible representations

dim11111222222222
type++++++++++++
imageC1C2C2C2C2D4D4D7SD16D14D14D28D28C56⋊C2
kernelC22×C56⋊C2C2×C56⋊C2C22×C56C22×Dic14C22×D28C2×C28C22×C14C22×C8C2×C14C2×C8C22×C4C2×C4C23C22
# reps112111313818318648

Matrix representation of C22×C56⋊C2 in GL4(𝔽113) generated by

1000
011200
0010
0001
,
112000
0100
0010
0001
,
1000
0100
0070105
008104
,
1000
011200
00103103
008910
G:=sub<GL(4,GF(113))| [1,0,0,0,0,112,0,0,0,0,1,0,0,0,0,1],[112,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,70,8,0,0,105,104],[1,0,0,0,0,112,0,0,0,0,103,89,0,0,103,10] >;

C22×C56⋊C2 in GAP, Magma, Sage, TeX

C_2^2\times C_{56}\rtimes C_2
% in TeX

G:=Group("C2^2xC56:C2");
// GroupNames label

G:=SmallGroup(448,1192);
// by ID

G=gap.SmallGroup(448,1192);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,675,80,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^56=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^27>;
// generators/relations

׿
×
𝔽